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Abstract—The total synthesis of the immunomodulator, (+)-conagenin was achieved using, as a key step, a method developed by us
for the synthesis of 2-methyl-1,3-diols via Ti(I1])-mediated diastereo- and regioselective opening of trisubstituted 2,3-epoxy alcohols,
to carry out the stereoselective construction of its pentanoic acid segment.

© 2006 Elsevier Ltd. All rights reserved.

Conagenin (1) is a low molecular weight immunomodu-
lator isolated from the fermentation broth of Strepto-
myces roseosporus.! This molecule exhibits wide-ranging
biological activity. It stimulates activated T cells, which
produce lymphokines and generate antitumor effector
cells.? The antitumor efficacies of adriamycin and mito-
mycin C against murine leukemias are also enhanced by
1, making it a potential candidate for cancer chemother-
apy.” It has a densely functionalized structure consisting
of a (2R,3S,4R)-2,4-dihydroxy-3-methylpentanoic acid
moiety with three contiguous chiral centers, coupled to
a (S)-o-methylserine possessing a quaternary chiral cen-
ter. The pronounced biological activities of conagenin
and its highly substituted structure make it an attractive
target to synthetic organic chemists.*

We envisaged that the total synthesis of this molecule
would not only provide access to larger quantities neces-
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sary for further biological studies, but also help to
design and build more potent synthetic analogs. Retro-
synthetic analysis of 1 reveals that it can be made easily
from the two units 2 and 3. In this letter, we describe the
total synthesis of the conagenin (1) using 3-methyl-2-bu-
ten-1-ol (4) as a common starting material to build both
the fragments, 2 and 3.

The salient feature of our synthesis is the successful
application, as a key step, of a very efficient method
developed by us earlier for the synthesis of 2-methyl-
1,3-diols via radical-mediated regioselective ring open-
ing of trisubstituted 2,3-epoxy alcohols at the more
substituted center using Cp,TiCl.> The excellent dia-
stereoselectivities observed in these reactions prompted
us to employ it in our present study for the stereose-
lective construction of the propionate-derived acid
component 2.
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Scheme 1. Stereoselective synthesis of 2.

Scheme 1 outlines the details of the synthesis of 2. The
syn epoxy alcohol 5 was prepared from 4 in five steps
following the procedures reported earlier’>>—benzyl-
ation of the hydroxyl group, SeO,-mediated allylic oxi-
dation,” Grignard addition to the resulting aldehyde
with MeMgl, Sharpless kinetic resolution® of the allylic
alcohol and mCPBA epoxidation of the chiral allylic
alcohol. Ring opening of 5 with Cp,Ti(IIT)Cl, generated
in situ from Cp,TiCl, following the reported procedure,’
gave the expected all syn product 6 almost exclusively as
a single isomer. The trace amount of the anti,anti isomer
could be easily removed by standard silica gel column
chromatography. The '*C NMR spectrum of the aceto-
nide of 6 showed the chemical shifts of the methyl car-
bons of the acetonide function at 19.6 and 29.9 ppm
and that of the ketal carbon at 98.8 ppm confirming it
to be a ‘1,3-syn’ acetonide.’ Besides, the 3J couplings
of 2.4 Hz between 2H and 3H and 2.3 Hz between 3H
and 4H in the acetonide support the S-configuration
of the 3-Me substituent. Compound 6 was then trans-
formed into its diacetate 7 in 92% yield. Debenzylation
of 7 by catalytic hydrogenation was followed by a
two-step oxidation of the resulting primary hydroxyl
group to the acid 2 in 81% yield.

The synthesis of fragment 3 is described in Scheme 2.
The aldehyde obtained by the SeO, oxidation of benzyl-
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ated 4 from Scheme 1 was reduced with NaBH, to fur-
nish the allylic alcohol 8 in 60% yield in two steps.
Katsuki-Sharpless catalytic asymmetric epoxidation'”
of 8 using p-(—)-tartrate gave the requisite chiral epoxy
alcohol 9 in 80% yield (>95% ee). The trichloroacetimi-
date 10 of this epoxy alcohol underwent facile intramo-
lecular SN2 opening of the epoxide ring under acidic
conditions*®!! to furnish the oxazole 11 in 84% yield.
Acid hydrolysis of the oxazole ring gave an amino diol
which was protected in situ using Boc,O to furnish 12
in 92% yield. Debenzylation of 12 by catalytic hydroge-
nation gave a triol intermediate whose 1,2-diol moiety
was oxidatively cleaved using NalOy,. The resulting alde-
hyde was next oxidized to an acid and esterified using
CH;N, to give Boc-(S)-a-methylserine methyl ester 3
in 72% yield in three steps from 13.

The coupling of the fragments 2 and 3 and the final
stages of the synthesis are shown in Scheme 3. Acid 2
was esterified with the alcohol 3 using DCC, HOBt,
and DMAP to furnish the ester 14 in 91% yield.*¢

Deprotection of the Boc-group freed the amine, which
underwent a smooth ester to amide rearrangement on
treatment with aqueous NaHCO;*4 to give 15 in 78%
yield. Finally saponification of 15 furnished the target
molecule 1 in 83% yield. The spectroscopic data,
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Scheme 2. Stereoselective synthesis of 3.
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Scheme 3. Synthesis of (+)-conagenin 1.

namely, IR, NMR, mass spectra as well as the rotation
of our synthetic products, 15 and 1,'> were in confor-
mity with those reported earlier.!-*
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Data for diacetylconagenin methyl ester 15: R;=0.4
(silica gel 70% EtOAc in petroleum ether); [oc}%)g +33.0 (¢
0.51, CHCl5); IR (neat) vpay 3400, 3020, 1737, 1682 cm™;
'"H NMR (CDCls, 200 MHz): § 7.15 (s, 1H, NH), 5.09—
5.89 (m, 2H), 4.15 (dd, J=10.9, 3.1 Hz, 1H), 3.83 (dd,
J=10.9, 54 Hz, 1H), 3.80 (s, 3H, CO,Me), 2.29 (qt,
J=1, 54 Hz, 1H), 2.19 (s, 3H, CH;CO-), 2.07 (s, 3H,
CH;CO), 1.55 (s, 3H), 1.26 (d, J=6.2 Hz, 3H) 1.02 (d,
J=7Hz, 3H); *C NMR (CDCl;, 75 MHz): § 1734,
170.8, 170.2, 168.8, 75.1, 71.0, 65.4, 62.4, 53.0, 39.7, 21.1,
20.6, 19.6, 18.0, 9.6; MS (LSIMS): m/z (%) 348 (5)
[M+HT", 370 (72) [M+Na]".

Data for (+)-conagenin (1): [ot]%)l +50.2 (¢ 0.38, MeOH);
'"H NMR (CD;OD, 500 MHz): 6 4.16 (d, J = 2.4 Hz, 1H),
4.10 (d, J=11 Hz, 1H), 3.93-3.82 (m, 2H), 1.93 (m, 1H),
1.50 (s, 3H), 1.23 (d, /= 6.1 Hz, 3H), 0.94 (d, /= 7.3 Hz,
3H); MS (LSIMS): m/z (%) 272 (18) [M+Na]".
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